« 8-6 Instruments (motoplaneurs) » : différence entre les versions

De wiki-spl
Aller à la navigation Aller à la recherche
Ligne 82 : Ligne 82 :
La mesure de la température peut se faire par de multiples moyens ([[wikipedia:Bilame|bilame]], [[wikipedia:Thermomètre#Thermomètre_à_alcool|thermomètre à alcool]]...), dont certains nécessitent une source d'énergie électrique ([[wikipedia:Thermomètre#Thermomètre_électronique|Thermomètre électronique]]. La mesure de température sur un aéronef en mouvement est toujours légèrement supérieur à cause de la vitesse d'impact (du nombre de mach). C'est la [[wikipedia:Altitude_et_vitesse_(aéronautique)#Température_totale_ou_d'impact_ou_Ti|température totale]] mais elle considérée identique à la température statique pour le vol en planeur.
La mesure de la température peut se faire par de multiples moyens ([[wikipedia:Bilame|bilame]], [[wikipedia:Thermomètre#Thermomètre_à_alcool|thermomètre à alcool]]...), dont certains nécessitent une source d'énergie électrique ([[wikipedia:Thermomètre#Thermomètre_électronique|Thermomètre électronique]]. La mesure de température sur un aéronef en mouvement est toujours légèrement supérieur à cause de la vitesse d'impact (du nombre de mach). C'est la [[wikipedia:Altitude_et_vitesse_(aéronautique)#Température_totale_ou_d'impact_ou_Ti|température totale]] mais elle considérée identique à la température statique pour le vol en planeur.


=== Magnétisme : compas à lecture directe ===
=== Magnétisme : le Compas à lecture directe ===
Champ magnétique de la terre
Le compas est un instrument de bord permettant de mesurer la direction en utilisant le [[wikipedia:Champ_magnétique_terrestre|champ magnétique terrestre]]. Son fonctionnement est similaire à celui d'une [[wikipedia:Boussole|boussole]]. Le pilote peut lire le cap grâce à une boule magnétique qui s'aligne avec le champ magnétique de la terre. Les indications sont très souvent graduées en dizaines de degrés : 3 = 30° ; 27 = 270°...etc. La boule baigne dans un liquide pour amortir ses oscillations.


Compas à lecture directe
<gallery mode="packed" heights=200px>
#Conception, précision et déviation (utilisation, exploitation des donnée au chapitre "navigation")
File:Aero Magnetic Compass.jpg|Compas magnétique aéronautique.
#Erreurs dues au virage et à l'accélération
Fichier:Compas-magnetique_1.png|Le cap compas indiqué est de 45°.
</gallery>
L'interprétation du changement de cap peut être contre-intuitive : Sur l'image ci-dessus, pour s'aligner sur le cap compas 30° il faut virer vers la gauche ! En effet, la boule magnétique est toujours alignée avec le champ magnétique terrestre. C'est l'aéronef qui bouge autour de la boule magnétique. Ce phénomène est facilement compréhensible en vol.
 
Le compas est un instrument simple, mais les caractéristiques de l'indication du compas nécessitent des corrections. Elles sont détaillées au chapitre Navigation [[9-2_Magnétisme_et_compas_(motoplaneurs)|9.2 Magnétisme et compas]]. Afin d'obtenir la vrai direction, les erreurs de '''déclinaison''' et de '''déviation''' doivent être retirées par calcul :
<center><math>Vrai~direction=Direction~indiquee~compas+Correction~Declinaison+Correction~Deviation</math></center>
 
 
Le compas mesure la direction du champ magnétique là où il se trouve. Tout éléments qui génère un champ magnétique peut l'influencer, il en résultera une indication de direction très erronée. Le pilote doit prendre les précautions nécessaires pour garantir la bonne indication du compas :
*un [[wikipedia:Aimant_permanent|aimant]] placé à proximité d'un compas : des aimants sont présents dans les casques utilisé dans les aéronefs, les téléphones...
*les systèmes électriques de l'aéronef génèrent divers champs magnétiques dû à la [[wikipedia:Champ_magnétique#Courants_électriques|circulation du courant électriques dans les câbles]]. Le fonctionnement de certaines servitudes électriques peut donc influencer le compas.
*les [[wikipedia:Ferromagnétisme|masses métalliques ferromagnétiques]], même sans être des aimants, posent problèmes. Un stylo qui possède un corps métallique à proximité immédiate d'un compas rend son indication fausse.
 
Enfin, le compas indique une valeur correcte en ligne droite en l'absence de turbulence importante. Il ne faut pas prendre en compte l'indication d'un compas :
*lors d'un virage;
*lors de turbulences importantes.
 
Utilisation et exploitation du compas lors des navigations au chapitre Navigation [[9-2_Magnétisme_et_compas_(motoplaneurs)|9.2 Magnétisme et compas]]


=== Instruments gyroscopiques ===
=== Instruments gyroscopiques ===

Version du 29 mars 2022 à 19:55

Instruments

Altimetre

L'altimètre indique l'altitude de l'aéronef en mesurant la pression statique de l'air. La pression statique est d'environ 1013hPa (=environ 1bar) et diminue lorsque l'altitude augmente. Il est donc possible de déterminer l'altitude grâce à la mesure de la pression, on l'appelle altitude-pression. A proximité du sol, la pression diminue de 1hPa à chaque fois que l'altitude augmente de 8.5m (=28ft).

Une des difficultés est de pouvoir mesurer la pression statique sur l'aéronef lorsqu'il est en mouvement. Les prises de pressions statiques de l'aéronef sont placées parallèlement à l'écoulement de l'air (pour ne pas être perturbées par la vitesse), de chaque côté du fuselage (pour annuler les effet d'une rafale ou d'un dérapage), dans des zones de pression neutre (éviter les zones au dessus/dessous de l'aile). Un planeur dispose entre 2 et 4 prises de pressions statiques, reliées entre-elles à l'intérieur du fuselage, et connectées à l'altimètre.

La mesure de l'altitude grâce à la pression comporte un certaine imprécision due à :

  • La qualité des sondes de pressions statiques sur l'aéronef.
  • La qualité de l'instrument : frottements mécaniques, sensibilité de l'instrument à la température, usure...
  • L'écart de température par rapport à l'atmosphère standard. En air plus froid que la normale, l'aéronef est en réalité plus bas que l'altitude-pression indiquée. Cette erreur est ignorée pour la gestion de trafic aérien (tous les altimètres ont la même erreur), et peu importante pour le vol en planeur (vol à vue, la proximité d'un éventuel relief sera bien identifié par le pilote). L'erreur est d'environ 0.4% par degré d'écart (exemple : si 10° plus froid, 4% plus bas que l'altitude-pression indiquée).

Les différentes références barométriques :

  1. Les différentes références barométriques utilisables(QNH, QFE et 1013,25)

Variomètre

Le variomètre mesure la variation de la pression statique de l'air entre le moment actuel, et le moment 3 à 8 secondes avant. Si l'aéronef change d'altitude entre ces deux moments (montée, descente, rencontre d'une ascendance...), le variomètre indiquera un taux de monté ou de descente en mètre par secondes (m/s) ou en pieds par minutes (ft/min).

  • Le variomètre est basiquement connectées aux prises de pressions statiques de l'aéronef. Il indique les variations d'altitudes.
    • le variomètre aide le pilote à détecter les ascendances (valeur positive au variomètre), mais il peut être trompé par son propre pilotage : Si le pilote ralenti brusquement ("tire" sur le manche) le planeur gagne de l'altitude et le variomètre indique une valeur très positive alors qu'il n'y a aucune ascendance.
  • Il existe une seconde possibilité de brancher le variomètre, sur une sonde de pression dite compensée ou à énergie totale. En plus d'indiquer les variations d'altitudes (ou variation d'énergie potentielle), il prend en compte et déduit les variations de vitesses (ou variation de l'énergie cinétique). Ainsi, si l'altitude varie à cause d'une action du pilote dans le but de faire augmenter ou diminuer sa vitesse (le pilote "pousse" ou "tire" sur le manche), l'aiguille du variomètre à énergie totale ne bouge quasiment pas. Le variomètre à énergie totale ne tiens pas compte des conversions entre énergie potentielle (altitude) et énergie cinétique (vitesse) réalisées par le pilote, mais indique les variations de leur somme, les variations d'énergie totale.
    • Si la vitesse augmente grâce à un apport d'énergie extérieur, comme l'accélération au décollage (avion remorqueur, treuil, motoplaneur...), le variomètre à énergie totale indiquera une valeur positive car l'énergie totale augmente !
  • Il existe un troisième type d'indication dit variometre netto qui implique souvent un traitement électronique des données. Il s'agit d'un mode qui affiche la vitesse verticale de la masse d'air qui entoure l'aéronef, en ignorant le taux de chute propre du planeur
    • on parle de variomètre "Net" du taux de chute du planeur.


Le fonctionnement interne d'un variomètre est similaire à celui d'un altimètre sur lequel une fuite calibrée permet de ré-équilibrer les pressions entre l'intérieur et l'extérieur de la capsule en 3 à 8 secondes. Les variomètres doivent contenir une grande quantité d'air pour être précis, ce sont des instruments relativement gros. Pour faciliter leur intégration dans le tableau de bord, les fabricants d'instruments propose des variomètres petits pour lesquelles une bouteille additionnelle déportée est nécessaire.

PHOTO bouteille, et antenne de compensation

Le variomètre peut être équipé d'un anneau appelé anneau de McCready qui indique la vitesse de croisière optimale dans des conditions données :

  • Il possède une origine (triangle blanc),
  • Il est gradué avec différentes vitesses de vols, en fonction des performances du planeur.

L'utilisation de l'anneau de Mc CREADY est détaillé au chapitre XXXXXX

L'indication donnée par le variomètre souffre de quelques biais :

  • Le retard de l'indication : le vario indique ce qu'il s'est passé durant les 3 à 8 secondes avant. Lorsque l'aiguille affiche une ascendance, cela fait déjà plusieurs secondes que le planeur y est entré. Le pilote doit prendre en compte ce retard pour prendre les bonnes décisions.
  • La sensibilité aux rafales : suivant le type de branchement utilisé (vario classique ou a énergie totale), une rafale de vent de face peut être traduite par une brève indication positive. Le pilote doit se fier à ses sensation pour différencier une rafale de vent d'une véritable ascendance.
  • La sensibilité au dérapage: Un vol en dérapage peut occasionner une indication au variomètre trompeuse.

Indicateur de vitesse air

L'anémomètre (parfois appelé « badin » en France du nom de son inventeur, Raoul Badin) indique la vitesse air par une mesure de la pression dynamique. En effet, la vitesse de l'aéronef est en relation directe avec la pression dynamique due à la vitesse. Cette mesure implique de faire la différence entre la pression totale et la pression statique :

Une fois la pression dynamique obtenue, la vitesse peut être déduite par calcul (formule donnée pour information) :

  • , d'où

La vitesse est affichée sur un cadran en Noeud ou en kilomètre par heure. Ce dernier comporte obligatoirement des indications de couleurs permettant de se rendre compte très facilement des limitations de l'aéronef  :

  • l'arc vert indique les conditions normales de vol de l'aéronef;
  • l'arc jaune les vitesses interdites en air turbulent ;
  • l'arc blanc la plage de sortie des dispositifs hypersustentateurs ;
  • enfin, le trait rouge indique la vitesse limite (VNE :velocity never exceed).


L'anémomètre affiche la Vi pour Vitesse Indiquée (IAS pour Indicated Air Speed en anglais). Cette vitesse est souvent suffisante pour le pilote de planeur malgré qu'elle soit entachée de quelques érreurs. Les autres vitesses utilisées sont :


L'indication de vitesse air affichée sur l'anémomètre peut être erronée notamment par :

  • La qualité de la sonde de pression totale : elle peut être perturbé par la présence d'un câble de remorquage, par le souffle de l'hélice.
  • La sensibilité au dérapage: Un vol en dérapage peut occasionner une indication de vitesse air fausse voire nulle.

Indicateur de température air

Parfois, un indicateur de température extérieur est présent dans la cabine. Cette indication est obligatoire lorsque l'aéronef dispose de water-ballast, ces derniers doivent être vide pour voler à des températures négatives. La mesure de la température peut se faire par de multiples moyens (bilame, thermomètre à alcool...), dont certains nécessitent une source d'énergie électrique (Thermomètre électronique. La mesure de température sur un aéronef en mouvement est toujours légèrement supérieur à cause de la vitesse d'impact (du nombre de mach). C'est la température totale mais elle considérée identique à la température statique pour le vol en planeur.

Magnétisme : le Compas à lecture directe

Le compas est un instrument de bord permettant de mesurer la direction en utilisant le champ magnétique terrestre. Son fonctionnement est similaire à celui d'une boussole. Le pilote peut lire le cap grâce à une boule magnétique qui s'aligne avec le champ magnétique de la terre. Les indications sont très souvent graduées en dizaines de degrés : 3 = 30° ; 27 = 270°...etc. La boule baigne dans un liquide pour amortir ses oscillations.

L'interprétation du changement de cap peut être contre-intuitive : Sur l'image ci-dessus, pour s'aligner sur le cap compas 30° il faut virer vers la gauche ! En effet, la boule magnétique est toujours alignée avec le champ magnétique terrestre. C'est l'aéronef qui bouge autour de la boule magnétique. Ce phénomène est facilement compréhensible en vol.

Le compas est un instrument simple, mais les caractéristiques de l'indication du compas nécessitent des corrections. Elles sont détaillées au chapitre Navigation 9.2 Magnétisme et compas. Afin d'obtenir la vrai direction, les erreurs de déclinaison et de déviation doivent être retirées par calcul :


Le compas mesure la direction du champ magnétique là où il se trouve. Tout éléments qui génère un champ magnétique peut l'influencer, il en résultera une indication de direction très erronée. Le pilote doit prendre les précautions nécessaires pour garantir la bonne indication du compas :

  • un aimant placé à proximité d'un compas : des aimants sont présents dans les casques utilisé dans les aéronefs, les téléphones...
  • les systèmes électriques de l'aéronef génèrent divers champs magnétiques dû à la circulation du courant électriques dans les câbles. Le fonctionnement de certaines servitudes électriques peut donc influencer le compas.
  • les masses métalliques ferromagnétiques, même sans être des aimants, posent problèmes. Un stylo qui possède un corps métallique à proximité immédiate d'un compas rend son indication fausse.

Enfin, le compas indique une valeur correcte en ligne droite en l'absence de turbulence importante. Il ne faut pas prendre en compte l'indication d'un compas :

  • lors d'un virage;
  • lors de turbulences importantes.

Utilisation et exploitation du compas lors des navigations au chapitre Navigation 9.2 Magnétisme et compas

Instruments gyroscopiques

Gyroscope : principes de base

  1. Définitions et conception
  2. Propriétés fondamentales
  3. Dérives

Coordinateur de virage

  1. Conception, utilisation et erreurs

Horizon artificiel

  1. Conception, utilisation, erreurs et précision

Systèmes de communication

Différents Modes de transmission : VHF, Haute Fréquence et SATCOM

  1. Principes, largeur de bande, limitation opérationnelles et utilisation

Communication orale par VHF

  1. Définitions, généralités et applications

Systèmes d'alarme et systèmes de détection de proximité, FLARM, TCAS

  1. Systèmes d'alarme
  2. Conception, utilisation, indications et alarmes

Système de positionnement

  1. Transpondeur
  2. Flarm

Instruments intégrés : affichages électroniques

  1. Conception, différentes technologies et limitations

Systèmes d’indication

Différents types, conception, utilisation, caractéristiques et précision

  1. Indicateur de pression
  2. Sondes de température
  3. Jauge de carburant
  4. Débitmètres
  5. Transmetteur de position
  6. Tachymètre
  7. Alarme de décrochage