« 8-1 Cellule (motoplaneurs) » : différence entre les versions
(23 versions intermédiaires par le même utilisateur non affichées) | |||
Ligne 1 : | Ligne 1 : | ||
{{:8-_Aéronefs_(motoplaneurs)}} | |||
== Cellule == | == Cellule == | ||
[[Fichier:Composants_motoplaneur_1.png|thumb|Principaux composants de la cellule d'un motoplaneur]] | [[Fichier:Composants_motoplaneur_1.png|thumb|Principaux composants de la cellule d'un motoplaneur]] | ||
Ligne 18 : | Ligne 19 : | ||
<gallery mode="packed" heights=200px> | <gallery mode="packed" heights="200px"> | ||
Fichier:Cellule_profil_vocabulaire.png|'''Vocabulaire d'une demie-aile'''. Le même vocabulaire est utilisé pour tous les autres composants aérodynamiques avec profils (empennages, hélice...). | Fichier:Cellule_profil_vocabulaire.png|'''Vocabulaire d'une demie-aile'''. Le même vocabulaire est utilisé pour tous les autres composants aérodynamiques avec profils (empennages, hélice...). | ||
Fichier:Cellule_Aile_1.png|Structure d'une demie-aile simple. | Fichier:Cellule_Aile_1.png|Structure d'une demie-aile simple. | ||
</gallery> | </gallery> | ||
L'aile doit supporter les efforts statique de portance et de trainée, et leurs variations lors du braquage des ailerons, des volets et des aérofreins. Plus difficile à appréhender, elle doit aussi avoir une certaine rigidité en torsion, ce qui influe fortement la vitesse maximum de l'aéronef, car plus l'aile est rigide et plus le phénomène néfaste de ''flutter'' (résonance entre la flexion et la torsion : le [[wikipedia:Flottement|''flutter'']]) surviendra à une vitesse élevée. | L'aile doit supporter les efforts statique de portance et de trainée, et leurs variations lors du braquage des ailerons, des volets et des aérofreins. Plus difficile à appréhender, elle doit aussi avoir une certaine rigidité en torsion, ce qui influe fortement la vitesse maximum de l'aéronef, car plus l'aile est rigide et plus le phénomène néfaste de '''''flutter''''' (résonance entre la flexion et la torsion : le [[wikipedia:Flottement|''flutter'']]) surviendra à une vitesse élevée. | ||
Le concepteur de l'aéronef place l'aile sur le fuselage à un endroit précis : Sa '''position''' pour notamment gérer les problématiques liées à l'équilibre des forces sur l'aéronef, et '''l'[[5-1 Bases aérodynamique (motoplaneurs)#Forme d’un profil aérodynamique|angle de calage]]''' (angle entre la corde du profil et l'axe du fuselage) pour des raisons de visibilité en vol et d'incidence maximum au roulage. | |||
===Fuselage=== | ===Fuselage=== | ||
[[File:Unrestored Glider fuselage - Yanks Air Museum (25591931374).jpg|thumb|Exemple de fuselage de planeur en structure métallique]] | [[File:Unrestored Glider fuselage - Yanks Air Museum (25591931374).jpg|thumb|Exemple de fuselage de planeur en structure métallique]] | ||
Le [[wikipedia:Fuselage|fuselage]] contient le cockpit, le train d'atterrissage, et éventuellement le Groupe Moto Propulseur. De solides pions d'ancrages permettent de porter le fuselage entre les deux demie-ailes. Le fuselage se prolonge vers l'arrière (poutre de queue) pour servir de point d'ancrage aux empennages, relativement loin du centre de gravité de l'aéronef. Le fuselage peut contenir un réservoir de carburant. | Le [[wikipedia:Fuselage|'''fuselage''']] contient le cockpit, le train d'atterrissage, et éventuellement le Groupe Moto Propulseur. De solides pions d'ancrages permettent de porter le fuselage entre les deux demie-ailes. Le fuselage se prolonge vers l'arrière (poutre de queue) pour servir de point d'ancrage aux empennages, relativement loin du centre de gravité de l'aéronef. Le fuselage peut contenir un réservoir de carburant. | ||
<gallery mode="packed" heights=170px> | <gallery mode="packed" heights="170px"> | ||
Fichier:Cellule_Fuselage_1.png|Structure d'un fuselage simple | Fichier:Cellule_Fuselage_1.png|Structure d'un fuselage simple | ||
</gallery> | </gallery> | ||
Ligne 42 : | Ligne 44 : | ||
Le fuselage doit supporter les efforts lié à la charge utile (pilote, bagage), les efforts de traction du moteur (ou du câble de remorquage/treillage) et les efforts aérodynamiques des empennages. Ces derniers peuvent être très important à haute vitesse, le braquage des commandes est d'ailleurs limité à un tiers du débattement total au delà d'une certaine vitesse. Au niveau du train d'atterrissage, le fuselage doit être renforcé pour supporter la charge de l'aéronef lorsqu'il touche le sol et qu'il roule au sol. | Le fuselage doit supporter les efforts lié à la charge utile (pilote, bagage), les efforts de traction du moteur (ou du câble de remorquage/treillage) et les efforts aérodynamiques des empennages. Ces derniers peuvent être très important à haute vitesse, le braquage des commandes est d'ailleurs limité à un tiers du débattement total au delà d'une certaine vitesse. Au niveau du train d'atterrissage, le fuselage doit être renforcé pour supporter la charge de l'aéronef lorsqu'il touche le sol et qu'il roule au sol. | ||
===Cockpit=== | |||
Le [[wikipedia:Poste_de_pilotage|'''cockpit''']] ou '''poste de pilotage''' désigne l'espace réservé au pilote, son copilote. Il contient toutes les commandes et les instruments nécessaires au pilotage de l'appareil. Pour s'adapter à la taille du pilote, le siège ainsi que les palonniers peuvent être réglables. Dans le cas contraire des cousins spécifiques peuvent être utilisés. Le pilote est sanglé au siège par une '''ceinture de sécurité à déverrouillage rapide''' contenant 4 points (2 ventrales et 2 bretelles). Les planeurs de catégorie A (Acrobatique) disposent obligatoirement d'un cinquième point entre les jambes. | |||
Les commandes de vols sont '''identifiés par des couleurs'''. Le rouge est réservé aux commandes d'urgences comme par exemple le largage de la verrière pour l'évacuation en vol. Une commande de couleur rouge ne doit normalement pas être manipulée en situation normale. Un cas particulier existe dans le cas où la commande d'ouverture normale de verrière (couleur blanche) est la même que la commande de largage de la verrière (couleur rouge), la couleur de la commande sera alors rouge. | |||
<gallery mode="packed" heights="170px"> | |||
Fichier:Cellule_cockpit_1.png|Description d'un cockpit simple. '''Noter la couleur normalisée des commandes'''. ''Les commandes non représentées (train d'atterrissage, volets de courbure, réglage palonnier...) sont de couleur noire.'' | |||
</gallery> | |||
Le planeur est conçu pour voler avec un pilote d'une certaine masse (généralement entre 70 et 110kg parachute inclus). Si le pilote est trop lourd, il n'a pas d'autre choix que de maigrir ! mais si il est trop léger, des masses additionnelles appelée vulgairement [[wikipedia:Gueuse_(sidérurgie)|'''geuses''']] peuvent être utilisées. Deux types de masses existes : Une masse à placer sous le pilote (de l'équivalent de ce qu'il manque au pilote pour atteindre la masse minimum) ou des masses prévues par le constructeur placées à l'avant du cockpit (la masse à ajouter est alors plus faible car le bras de levier par rapport au centre de gravité est plus grand). | |||
===Empennages horizontal et vertical=== | ===Empennages horizontal et vertical=== | ||
Ligne 55 : | Ligne 68 : | ||
La structure des empennages reprend les principes de construction d'une aile. Seul l'empennage horizontal se démonte dans le but de placer le planeur en remorque. | La structure des empennages reprend les principes de construction d'une aile. L'empennage vertical peut contenir un système pour lester la queue du planeur (avec de l'eau ou avec des masses en plomb) pour ajuster le centrage de l'aéronef. Seul l'empennage horizontal se démonte dans le but de placer le planeur en remorque. | ||
Les empennages génèrent des efforts qui vont permettre de stabiliser et diriger le planeur. La poutre de queue est fortement sollicitée car elle transmet l'ensemble des efforts au reste du planeur. Aussi, l'empennage horizontal ne permet pas de manipuler l'aéronef au sol et le pilote devra s'interdire d’exercer des efforts importants sur ce dernier. | Les empennages génèrent des efforts qui vont permettre de stabiliser et diriger le planeur. La poutre de queue est fortement sollicitée car elle transmet l'ensemble des efforts au reste du planeur. Aussi, l'empennage horizontal ne permet pas de manipuler l'aéronef au sol et le pilote devra s'interdire d’exercer des efforts importants sur ce dernier. | ||
===Gouvernes de vol et de contrôle=== | |||
[[Fichier:ControlSurfaces.gif|thumb|Animation de l'effet des différentes gouvernes dans un aéronef]] | |||
Une [[wikipedia:Gouverne|'''gouverne''']] est une surface mobile permettant de diriger l'aéronef. A chacun des 3 axes est associé une gouverne, actionnée par une commande dans le cockpit : | |||
*Axe de tangage : Gouverne de profondeur actionnée par le manche d'avant en arrière | |||
*Axe de roulis: Les ailerons actionnés par le manche de droite à gauche | |||
*Axe de lacet : Gouverne de direction actionnée par les palonniers | |||
=== | Ces gouvernes sont construites selon les mêmes principes que la voilure et les empennages (longeron, nervure, revêtement...). Elles sont reliées à l'aéronef par un axe d'articulation, et actionnées par une commande. Le concepteur s'arrange pour l'effort nécessaire pour actionner la gouverne soit compatible avec l’effort que peut fournir un humain : ni trop fort, ni trop faible. | ||
Aussi, une gouverne doit absolument être stable dans l'écoulement et ne jamais se mettre à osciller d'elle-même. Cette condition est rempli lorsque le centre de gravité de la gouverne est situé en avant de son articulation. Le constructeur de l'aéronef peut recourir à des contrepoids placés à l'avant de la gouverne pour y parvenir. Il faut veiller à conserver cette condition, notamment lors des petites réparations sur une gouverne. Le constructeur limite parfois l'ajout de masse au bord de fuite d'une gouverne à seulement quelques grammes ! | |||
=== Techniques de construction === | |||
Les techniques de construction des planeurs sont nées de l'histoire et des avancés technologiques. Les premières se basaient sur une structure solide qui assure la résistance de la cellule, recouverte d'une peau qui assure l'écoulement aérodynamique optimal (notamment les structures en bois recouvertes de toile, ou en tubes d'aciers recouvertes de toile). Est arrivé ensuite les peaux rigides : une mince feuille de contreplaqué rigide ou d'aluminium rigide remplace la toile. La structure peut être allégée car la peau mince contribue à la résistance, et sa rigidité permet l'éviter la déformation des profils dus aux efforts aérodynamiques qui s'exercent. Enfin, l'avènement des matériaux composites ont permit l'élaboration de structure monocoque (ou semi-monocoque) : la peau seule est capable d'absorber les efforts nécessaire et il n'y a quasiment plus de structure. De telles structures quasi-monocoques sont réalisées avec des matériaux composites : il s'agit de tissus résistants (à base de fibre de verre, de carbone, d'aramide...) noyées dans une résine (souvent de la résine époxy pour les planeurs). La haute résistance de ces matériaux composites permet de concevoir des ailes mince. La fabrication dans un moule permet la mise en forme très précise de la peau. Les performances sont alors optimales. | |||
<gallery mode="packed" heights="200px"> | |||
File:Airframe_(4_types).PNG|Quatre types de construction: (1)Structure + revêtement souple, (2)Structure allégée + revêtement travaillant, (3)Construction monocoque, (4)construction Semi-monocoque. | |||
</gallery> | |||
<gallery mode="packed"> | |||
File:Wing_with_one_spar.JPG|Structure d'une aile avant d'être recouverte par un revêtement de type toile. | |||
File:SemiMonocoque_fuselage.jpg|Fuselage semi-monocoque | |||
</gallery> | |||
'''Les pièces en composites''' | |||
Les pièces en composites sont faites de tissus imprégnés de résine. Le tissus lui-même peut être fabriqué à base de [[wikipedia:fibre de verre|fibre de verre]], de [[wikipedia:fibre_de_carbone|fibre de carbone]] ou de [[wikipedia:aramide|fibre d'aramide]], de différentes grosseurs, et tissées suivant différentes [[wikipedia:Armure_(tissage)|armures]]. '''L'orientation''' de chaque couche et le '''nombre de couche''' de tissus superposées est choisi en fonction des efforts que la pièce doit absorber. Enfin, une pièce peut être conçu en [[wikipedia:Composite_à_structure_sandwich|structure sandwich]] pour augmenter la rigidité des grandes surfaces. Pour le pilote, il est important de noter qu'un défaut dans une peau d'une structure monocoque ou semi-monocoque a potentiellement un impact sur la solidité de l'aéronef. Pour le mécanicien, une réparation nécessitera de connaître avec précision toute la composition de la peau. | |||
<gallery mode="packed" heights="200px"> | |||
File:Sierracomposites.com3.gif|Tissus de verre (blanc) et tissus de carbone (noir). | |||
Fichier:TwaronSRM.jpg|Tissus en aramide (plus connu sous le nom de Kevlar). | |||
Fichier:Materiaux_CompositeNida_1.jpg|Peau de fuselage en sandwich nid d'abeille dans la partie inférieure de la photo. | |||
</gallery> | |||
'''Assemblages démontables à sécuriser''' | |||
Les assemblages démontables peuvent être réalisés par des vis, des écrous, des pièces clipsés ou encore par un simple axe. Il est impératif que ces assemblages ne puisse jamais se défaire d'eux même sous l'effet des variations de températures et des vibrations. Les constructeurs appliquent alors des techniques pour sécuriser de manière absolue les assemblages critiques de l'aéronef. Certains éléments sont à vérifier lors de la visite pré-vol, notamment les branchements rapides des commandes de vol entre les ailes et le fuselage, et entre le fuselage et la plan fixe horizontal. | |||
<gallery mode="packed"> | |||
# | Fichier:SPLINTgebogen.jpg|Écrou à créneaux, la goupille sécurise et empêche le desserrage | ||
Fichier:Nylon_Lock_Nut.png|[[wikipedia:Écrou#Écrous_spéciaux|Ecrou nylstop]], une bague en nylon frotte fortement et empêche l'écrou de tourner librement. | |||
Fichier:Thread-locking_fluid_applied.jpg|[[wikipedia:Frein_filet|Frein filet]], une colle spéciale qui sèche après le serrage de la vis. | |||
Fichier:Cotter_Pin_(PSF).png|Une [[wikipedia:Goupille|goupille]] fendue qui empêche l'axe de sortir de son articulation. | |||
</gallery> |